Indian Statistical Institute, Bangalore

B. Math.

First Year, Second Semester
Linear Algebra-II
Final Examination
Maximum marks: 100

Date: 24 April 2023
Time: $10.00 \mathrm{AM}-1.00 \mathrm{PM}$
Instructor: B V Rajarama Bhat

Note: Consider standard inner product on \mathbb{R}^{n} and \mathbb{C}^{n} unless some other inner product has been specified.
(1) Let m, n be natural numbers with $m<n$. Let $a, b \in \mathbb{C}$ be complex numbers. Define a matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n}$ by

$$
a_{i j}= \begin{cases}a & \text { if } 1 \leq i, j \leq m ; \\ b & \text { if } m<i, j \leq n \\ 0 & \text { otherwise }\end{cases}
$$

(i) Compute the characteristic polynomial of A. (ii) Compute the minimal polynomial of A. (iii) When is A invertible? (You should be careful and precise in your answers.)
[15]
(2) Let F be a vector space of real polynomials defined by $F=\left\{p: p(x)=a_{1} x+a_{2} x^{2}+\right.$ $\left.a_{3} x^{3}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$. (i) Show that $\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) d t$ defines an inner product on F. (ii) Obtain an orthonormal basis for F.
[15]
(3) Let P, Q be orthogonal projections on a finite dimensional complex Hilbert space \mathcal{H}. Take $\mathcal{M}=$ range (P) and $\mathcal{N}=$ range (Q). Show that if $\mathcal{M} \subseteq \mathcal{N}$ then $P \leq Q$ (in the sense that $Q-P$ is a positive operator.)
[15]
(4) Let V, W be finite dimensional inner product spaces and let $A: V \rightarrow W$ be a linear map. Show that

$$
\begin{equation*}
\operatorname{kernel}(A)=\left(\operatorname{range}\left(A^{*}\right)\right)^{\perp} . \tag{15}
\end{equation*}
$$

(5) Write down the spectral decomposition in the form $\sum_{j} a_{j} P_{j}$, where P_{j} 's are orthogonal projections, for the following matrices

$$
A=\left[\begin{array}{cc}
3 & i \tag{15}\\
-i & 3
\end{array}\right], B=\left[\begin{array}{lll}
3 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

(6) Let N be a normal matrix. Show that a matrix M commutes with N and if only if it commutes with N^{*}.
(7) Write down polar and singular value decompositions for the following matrix:

$$
C=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 4 & 0
\end{array}\right]
$$

